Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Linking permafrost to the abundance, biomass, and energy density of fish in Arctic headwater streamsAbstract Permafrost thaw alters groundwater flow, river hydrology, stream‐catchment interactions, and the availability of carbon and nutrients in headwater streams. The impact of permafrost on watershed hydrology and biogeochemistry of headwater streams has been demonstrated, but there is little understanding of how permafrost influences fish in these ecosystems. We examined relations among permafrost characteristics, the resulting changes in water temperature, stream hydrology (e.g., discharge flashiness), and macroinvertebrates, with the abundance, biomass, and energy density of juvenile Dolly Varden (Salvelinus malma) and Arctic Grayling (Thymallus arcticus) across 10 headwater streams in northwestern Alaska. Macroinvertebrate density was driven by concentrations of dissolved carbon and nutrients supporting stream food webs. Dolly Varden abundance was primarily related to water temperature with fewer fish in warmer streams, whereas Dolly Varden energy density decreased with the flashiness of the headwater streams. Dolly Varden biomass was related to both temperature and bottom‐up food web effects. The energy density of Arctic Grayling decreased with warmer temperatures and discharge flashiness. These relations demonstrate the importance of terrestrial–aquatic connections in permafrost landscapes and indicate the complexity of landscape effects on fish. Because permafrost thaw is one of the most impactful changes occurring as the Arctic warms, an improved understanding of how stream temperature, hydrology, and bottom‐up food web processes influence fish populations can aid forecasting of future conditions across the Arctic.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Abstract Climate change in the Arctic is altering watershed hydrologic processes and biogeochemistry. Here, we present an emergent threat to Arctic watersheds based on observations from 75 streams in Alaska’s Brooks Range that recently turned orange, reflecting increased loading of iron and toxic metals. Using remote sensing, we constrain the timing of stream discoloration to the last 10 years, a period of rapid warming and snowfall, suggesting impairment is likely due to permafrost thaw. Thawing permafrost can foster chemical weathering of minerals, microbial reduction of soil iron, and groundwater transport of metals to streams. Compared to clear reference streams, orange streams have lower pH, higher turbidity, and higher sulfate, iron, and trace metal concentrations, supporting sulfide mineral weathering as a primary mobilization process. Stream discoloration was associated with dramatic declines in macroinvertebrate diversity and fish abundance. These findings have considerable implications for drinking water supplies and subsistence fisheries in rural Alaska.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract In recent decades the habitat of North American beaver (Castor canadensis) has expanded from boreal forests into Arctic tundra ecosystems. Beaver ponds in Arctic watersheds are known to alter stream biogeochemistry, which is likely coupled with changes in the activity and composition of microbial communities inhabiting beaver pond sediments. We investigated bacterial, archaeal, and fungal communities in beaver pond sediments along tundra streams in northwestern Alaska (AK), USA and compared them to those of tundra lakes and streams in north‐central Alaska that are unimpacted by beavers.β‐glucosidase activity assays indicated higher cellulose degradation potential in beaver ponds than in unimpacted streams and lakes within a watershed absent of beavers. Beta diversity analyses showed that dominant lineages of bacteria and archaea in beaver ponds differed from those in tundra lakes and streams, but dominant fungal lineages did not differ between these sample types. Beaver pond sediments displayed lower relative abundances of Crenarchaeota and Euryarchaeota archaea and of bacteria from typically anaerobic taxonomic groups, suggesting differences in rates of fermentative organic matter (OM) breakdown, syntrophy, and methane generation. Beaver ponds also displayed low relative abundances of Chytridiomycota (putative non‐symbiotic) fungi and high relative abundances of ectomycorrhizal (plant symbionts) Basidiomycota fungi, suggesting differences in the occurrence of plant and fungi mutualistic interactions. Beaver ponds also featured microbes with taxonomic identities typically associated with the cycling of nitrogen and sulfur compounds in higher relative abundances than tundra lakes and streams. These findings help clarify the microbiological implications of beavers expanding into high latitude regions.more » « less
-
Beavers build dams that change the way water moves between streams, lakes, and the land. In Alaska, beavers are moving north from the forests into the Arctic tundra. When beavers build dams in the Arctic, they cause frozen soil, called permafrost, to thaw. Scientists are studying how beavers and the thawing of permafrost are impacting streams and rivers in Alaska’s national parks. For example, permafrost thaw from beavers can add harmful substances like mercury to streams. Mercury can be taken up by stream food webs, including fish, which then become unhealthy to eat. Permafrost thaw can also move carbon (from dead plants) to beaver ponds. When this carbon decomposes, it can be released from beaver ponds into the air as greenhouse gases, which cause Earth’s climate to warm. Scientists are trying to keep up with these busy beavers to better understand how they are changing Arctic landscapes and Earth’s climate.more » « less
-
Abstract. Repeated sampling of spatially distributed riverchemistry can be used to assess the location, scale, and persistence ofcarbon and nutrient contributions to watershed exports. Here, we provide acomprehensive set of water chemistry measurements and ecohydrologicalmetrics describing the biogeochemical conditions of permafrost-affectedArctic watersheds. These data were collected in watershed-wide synopticcampaigns in six stream networks across northern Alaska. Three watershedsare associated with the Arctic Long-Term Ecological Research site at ToolikField Station (TFS), which were sampled seasonally each June and August from2016 to 2018. Three watersheds were associated with the National ParkService (NPS) of Alaska and the U.S. Geological Survey (USGS) and weresampled annually from 2015 to 2019. Extensive water chemistrycharacterization included carbon species, dissolved nutrients, and majorions. The objective of the sampling designs and data acquisition was tocharacterize terrestrial–aquatic linkages and processing of material instream networks. The data allow estimation of novel ecohydrological metricsthat describe the dominant location, scale, and overall persistence ofecosystem processes in continuous permafrost. These metrics are (1)subcatchment leverage, (2) variance collapse, and (3) spatial persistence.Raw data are available at the National Park Service Integrated Resource Management Applications portal (O'Donnell et al., 2021, https://doi.org/10.5066/P9SBK2DZ) and within the Environmental Data Initiative (Abbott, 2021, https://doi.org/10.6073/pasta/258a44fb9055163dd4dd4371b9dce945).more » « less
An official website of the United States government
